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Different time scales in wave function intensity statistics
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Unstable periodic orbits scar wave functions in chaotic systems. The local short term dynamics also influ-
ences the associated spectra that follow the otherwise universal Porter-Thomas intensity distribution. We show
here how this deviation extends to other longer periodic orbits sharing some common dynamical characteris-
tics. This indicates that the quantum mechanics of the system can be described quite simply with few orbits, up
to the resolution associated with the corresponding lengths.
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Chaos is a well-defined phenomenon in classical mech
ics, but its manifestations at quantum level are not fully u
derstood yet@1#. The pioneering work of Gutzwiller@2#,
showing how the eigenvalues density of chaotic systems
be obtained from classical periodic orbits~PO!, constitutes
an important landmark in the investigation of ‘‘quantu
chaos.’’ Later, Heller demonstrated that, contrary to reas
able conjectures, unstable POs have a profound influenc
the distribution of quantum probability density of a nonva
ishing class of wave functions, which appear highly localiz
over these classical paths@3#. The wave functions exhibiting
this localization are said to be ‘‘scarred,’’ and they play
very important role in semiclassical theories@4#. Recently,
several methods, based on very different strategies, h
been described in the literature@5,6# for the systematic con
struction of nonstationary wave functions highly localized
POs. These novel tools also provide new insight into
understanding of the role of scarring in the quantum mech
ics of chaotic systems@7#. Scars also condition spectra. R
currences in the correlation function originated by the line
ized dynamics around unstable POs are the reason for
existence of a marked low resolution structure in the spe
of chaotic systems. Heteroclinic orbits have also been d
onstrated to be important when extending this theory bey
the linearized regime@8,9#.

Another main achievement in quantum chaos is undou
edly random matrix theory~RMT! @10#, which accounts for
many properties in the quantum spectra of chaotic syste
such as the widespread nearest neighbor energy level s
ing, which for all strong mixing systems follows the Wign
surmise@11#. The beauty of many RMT results is their un
versality, which turns out to be also its drawback, since th
are independent of the initial state preparation details an
dynamics. Other measures sensitive to them, such as the
tribution of spectral intensities, seem then, in principle, be
suited to elucidate relevant features in a given spectr
However, the statistical fluctuation of quantum transiti
strengths in stochastic systems was also found to be
scribed by another RMT universal formula, the Port
Thomas~PT! distribution @12#. In this respect, Alhassid an
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Levine demonstrated@13# that the PT distribution can be
simply obtained from the principle of maximum entropy
the strength distribution, with the only constrain of the ev
present sum rule for the total strength of the transition. Sib
and Borondo@14# showed that the same result can be deriv
by imposing the dynamical constrains implied by the sh
time motion of the system. Later Kaplan@15# found that,
although the tail of wave function intensity distribution
phase space is dominated by scarring associated with
least unstable PO, when the low resolution modulation
duced by it is removed, the remaining distribution match
the standard PT expression.

In this paper we report a study on the intensity distrib
tion statistics for the stadium scar wave functions. We sh
that the information it contains about POs is far richer th
assumed previously@10,14,15#, actually extending to times
much longer than that of the local short term dynami
Moreover, we show that these intensities have substruct
related to the interaction between POs, and we provid
method to find this set of interacting trajectories. We str
that this view is based on few POs, thus representing
important conceptual simplification over other approach
~see, for example, Refs.@8,9#!, which can be very useful for
future developments in the field of quantum chaos.

In our study we use a system consisting of a particle
mass 1/2 enclosed in a desymmetrized stadium billiard
radius r 51 and area of 11p/4, with Newman boundary
conditions on the symmetry axes~only even-even parity
eigenfunctions will be considered!.

We consider the dynamics influenced by the horizon
PO running along thex axis with y50. For this purpose we
start from a symmetry adapted initial wave packet
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~the coefficientsa, b, c, and d are obtained by imposing
Newman boundary conditions at the symmetry axes!, and
compute the~infinite resolution! spectrum

I `~E!5(
n

u^nuf~0!&u2d~E2En!5(
n

uanu2d~E2En!,

~3!

with (x0,y0,Px
0 ,Py

0)5(1,0,k0,0) andax5ay51.603/k0
1/2 (\

is set equal to 1 throughout this paper!. Kets un& represent
the eigenstates of the system, which have been obtained
ing the scaling method@16#. The aspect of the obtaine
I `(E) is rather irregular~see results below!, due to the
highly chaotic nature of the dynamics in this system. Ho
ever, when examined closely, the contributing ‘‘sticks’’ a
seen to come grouped in clumps. This indicates the existe
of a clear underlying structure, which is due to recurrence
the associated correlation functionC(t)5^f(0)uf(t)& in-
duced by the horizontal PO used to select the initial posit
of the wave packet. This regularity shows up as well-defin
bands in the low resolution version of the spectrum,

I T~E!5
1

2pE2`

`

dtWT~ t !C~ t !exp~ iEt !, ~4!

whereWT(t) is a suitable smoothing window function, fi
tering out the dynamics of the system for times longer th
T. Moreover, the positions of these bands are given by
usual Bohr-Sommerfeld quantization condition,

km5
2p

Lm
S m1

nm

4 D , ~5!

with Lm54 andnm53. The wave functions associated wi
these bands correspond to a series of scar functions on
PO with an increasing excitation along it, as discussed e
where@5,17,18#.

To efficiently study the characteristics of the spectra c
responding to this band structure, we define a ‘‘scar sp
trum’’ in the following way. Using the procedure describe
above, we calculate spectra at all energies,k05km , quan-
tized with the Bohr-Sommerfeld formulas and construc
new spectrum,Ĩ `(E), by taking only the central clump from
each one of them:

Ĩ `~E!5(
m

I m
band5(

m
(
$En%

8 uan
mu2d~E2En!, ~6!

where the prime indicates that the sum is only carried out
states in the range (Em–Em21)/2,En,(Em11–Em)/2. In
this way the spectrum statistics is improved, since the c
straint imposed by the finite width of the initial wave pack
is eliminated. Our calculations were performed in the ran
k550–250, which includes'8400 stadium eigenstate
Similarly to what was done in Eq.~4!, we can now define a
low resolution version of this spectrum, which, for a Gau
ian window function, takes the form
06621
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Ĩ t~E!5~2p!21/2tT0(
$En%

8 uanu2e2t2T0
2(E2En)2/2, ~7!

wheret is an adimensional smoothing parameter andT0 is
the period of the scarring orbit. The corresponding results
the rangeE523250–25300, are shown in Fig. 1, fort51
and 4.5. The first value of the smoothing parameter co
sponds approximately to the smallest smoothing that was
out all substructures. The required time scales with the
verse of the Lyapunov exponent@3#. When the resolution is
increased tot54.5, another superimposed intraband stru
ture is then exposed, thus revealing the relevance of lon
time dynamics.

To quantitatively examine the implication of this resu
we consider next the statistics of intensities in our scar sp
trum. According to RMT the distribution of ‘‘dynamically
normalized’’ intensities in a fully chaotic system is given b
the usualx2 ~PT! fluctuations@12#,

P~x!5~2px!21/2e2x/2. ~8!

However, and as stated in the introduction, one crucial po
when performing this analysis is to eliminate the modulat
due to any obvious low resolution structure present in
spectrum, so that all intensities are compared on the s
relative scale. This can be accomplished by ‘‘renormalizin
the intensities with the corresponding value of the envelo
@14,15#,

xn5Nuanu2/ Ĩ t~En!, ~9!

where, coherently with Eq.~8!, the number of states in th
spectrum,N, has been included, in order to obtain a me
value of unity. In Ref.@14# it was shown that this task can b
performed systematically by monitoring the correspond
variance from the PT distribution,s2, as a function of the
smoothing time.

In Fig. 2 we show the results of this calculation whe
using the first 1000, 2000, 4000, and 8000 states of the

FIG. 1. Scar spectrumĨ t(E) at infinite ~stick! and low resolu-
tion: t51 and 4.5~solid lines!, corresponding to a wave packe
initially centered on the horizontal axis of a desymmetrized stad
billiard with r 51, area 11p/4, and Newman boundary condition
at the symmetry axes.
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spectrum of Fig. 1. Only values in the range 1,xn,5 have
been included. This is a crucial detail of our computatio
method, which eliminates the divergence at the origin of
PT expression and the contribution from the tail of the d
tribution @15#, thus fostering the importance of the sticks
the subband structure. As can be seen, all curves fall
initially quite rapidly ast increases, and then start to stab
lize att.1, indicating that, at least, an optimal fitting to th
PT surmise can be obtained when subtracting from the in
sity distribution the low resolution envelope correspond
to the dynamics of the horizontal PO@19#. More interesting
is that, after this point, more optimal values ofs2 are ob-
tained for a range of values oft, which extend in some sor
of plateau or broad minimum. Finally, the variance gro
~approximately! parabolically after a pointtmax, indicating
when we are trying to describe the spectrum with too mu
‘‘dynamical’’ resolution ~for the number of states that hav
been included in the statistics!. The relevance of this figure i
that it shows the existence of plateaus, whose extens

FIG. 2. Variance from the Porter-Thomas results of the wa
function intensity distribution for the scar spectrum of Fig. 1, c
culated using the first 1000~dotted!, 2000 ~dotted-dashed!, 4000
~dashed!, and 8000~full line! states of the scar spectrum of Fig.
06621
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grow with N. Actually, tmax is found to scale, similarly to the
Heisenberg time, withAN, although it differs from this ex-
pression by a factor of.10, indicating that our statistica
treatment should allow at least ten states per band in orde
capture the fluctuations implied by the PT distribution.

This result is further illustrated in Fig. 3, where, in add
tion to that, the relation betweenLmax, the corresponding
orbit length, and invariant classical structures is also
vealed. To interpret this figure, one must take into acco
that in the stadium, as in any other chaotic system, Gutzw
er’s trace formula,r(k)5(nd(k2kn), gives the quantal
density of states in terms of information on all POs of t
system. This process can be inverted, by Fourier transfo
obtaining the classical spectra of orbits,f (L)5(nexp(iknL).
Figure 3 shows the square of this magnitude computed
N51000, 4000, and 8000. The results in the first panel
dicate that 1000 states are barely enough to distinguish
tween the two POs of lengthL.6.5 plotted in the insets
which, on the other hand, are fully resolved whenN
54000. The central panel shows how 4000 states are ab
discern dynamical features up toL.9. And finally, the re-
sults of panel~c! imply that the quantum mechanics of th
system up toL.16 can be adequately described with 80
states.

In order to elucidate which POs, other than the origin
horizontal one, are responsible for the plateaus observe
Fig. 2, a similar analysis can be performed with the s
spectrum of Fig. 1, by using the following strategy. Inste
of the global density of statesr(k), we employ now the local
~around the horizontal PO in phase space! version of it,

f̃ ~L !5(
n

uanu2eiknL. ~10!

The inclusion of weightsuanu2 it is not an irrelevant point,
since it implies that, contrary to what happens in Gutzw
er’s original trace formula, only POs dynamically linked
the initial one are allowed to enter in our calculations@18#.
The corresponding result is presented in Fig. 4, where i

e
-

for
FIG. 3. u f (L)u2 computed from the eigenvalues density of the desymmetrized stadium with Newman boundary conditionsN
51000 ~thick solid line!, 2000~thin solid line!, and 8000~dashed line!, and the corresponding periodic orbits.
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WISNIACKI et al. PHYSICAL REVIEW E 67, 066212 ~2003!
seen thatu f̃ (L)u2 presents a series of prominent peaks
multiples of a fundamental length of 4, the length of t
horizontal PO along which the packet was initially launche
Moreover, the contribution of other longer POs is al
clearly observed. By considering the lengths of the differ
POs of the stadium we have been able to assign each o
~nontrivial! contributing peaks, up to the fourth recurrence
the horizontal orbit; the corresponding POs are presente
the left inset of the figure. Notice that all these POs pres

FIG. 4. u f̃ (L)u2 computed from the stick scar spectrum of Fig.
The different peaks have been assigned to the periodic orbits plo
in the left inset. The right inset shows how 1000 states~thick solid
line! are not enough to reproduce the three central peaks of

fourth recurrence inu f̃ (L)u2.
cs

ev

nt
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some good portion of their paths overlapping significan
with the initial horizontal PO.~Peaks in the left panel of Fig
3 are, for instance, not observed in Fig. 4.! Again the degree
of resolution of our calculation is related to the maximu
value ofk included in the spectrum. This is illustrated in th
upper right inset to Fig. 4, where an enlargement of
fourth recurrence inu f̃ (L)u2, calculated using 1000 and 800
states of the scar spectrum of Fig. 1, is presented.

One final point, worth mentioning, is the peak heights
Fig. 4. Since they contain information on the extent a
phase of the interaction between the different POs contrib
ing to u f̃ (L)u2, it must be possible to obtain from them som
clues of the scarring process beyond the short time li
corresponding to the linearized dynamics around the ini
unstable fixed point. This interaction can be evaluated,
example, as the Hamiltonian matrix elements of the s
wave functions obtained with the methods of Refs.@5–7#,
and this will be the subject of a future publication.

In summary, we have shown that scar spectra contain
formation about how POs are dynamically related. This
formation is revealed by analyzing the associated inten
distributions, which show, superimposed to the universal
behavior, low resolution structures in the range of time sca
of the corresponding periods. Moreover, we show that
set of interacting POs is obtained by the inclusion of lo
weights in the Fourier transform of Gutzwiller trac
formulas.

This work was supported by Grant Nos. BMF2000-4
DGES, AECI ~Spain!, PICT97 3-50-1015, SECYT-ECOS
and CONICET~Argentina!.
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