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Different time scales in wave function intensity statistics
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Unstable periodic orbits scar wave functions in chaotic systems. The local short term dynamics also influ-
ences the associated spectra that follow the otherwise universal Porter-Thomas intensity distribution. We show
here how this deviation extends to other longer periodic orbits sharing some common dynamical characteris-
tics. This indicates that the quantum mechanics of the system can be described quite simply with few orbits, up
to the resolution associated with the corresponding lengths.
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Chaos is a well-defined phenomenon in classical mechar-evine demonstrated13] that the PT distribution can be
ics, but its manifestations at quantum level are not fully un-simply obtained from the principle of maximum entropy of
derstood yet[1]. The pioneering work of Gutzwillef2],  the strength distribution, with the only constrain of the ever
showing how the eigenvalues density of chaotic systems capresent sum rule for the total strength of the transition. Sibert
be obtained from classical periodic orbif80), constitutes and Borondd14] showed that the same result can be derived
an important landmark in the investigation of “quantum by imposing the dynamical constrains implied by the short
chaos.” Later, Heller demonstrated that, contrary to reasontime motion of the system. Later Kaplda5] found that,
able conjectures, unstable POs have a profound influence @ithough the tail of wave function intensity distribution in
the distribution of quantum probability density of a nonvan-phase space is dominated by scarring associated with the
ishing class of wave functions, which appear highly localizedeast unstable PO, when the low resolution modulation in-
over these classical patfi3]. The wave functions exhibiting duced by it is removed, the remaining distribution matches
this localization are said to be “scarred,” and they play athe standard PT expression.
very important role in semiclassical theorip4. Recently, In this paper we report a study on the intensity distribu-
several methods, based on very different strategies, haWon statistics for the stadium scar wave functions. We show
been described in the literatuf®,6] for the systematic con- that the information it contains about POs is far richer than
struction of nonstationary wave functions highly localized onassumed previousl10,14,15, actually extending to times
POs. These novel tools also provide new insight into thenuch longer than that of the local short term dynamics.
understanding of the role of scarring in the quantum mechanMoreover, we show that these intensities have substructures
ics of chaotic systemg7]. Scars also condition spectra. Re- related to the interaction between POs, and we provide a
currences in the correlation function originated by the linearmethod to find this set of interacting trajectories. We stress
ized dynamics around unstable POs are the reason for tiBat this view is based on few POs, thus representing an
existence of a marked low resolution structure in the spectrémportant conceptual simplification over other approaches
of chaotic systems. Heteroclinic orbits have also been denisee, for example, Ref§8,9]), which can be very useful for
onstrated to be important when extending this theory beyonéture developments in the field of quantum chaos.
the linearized regimés,9]. In our study we use a system consisting of a particle of

Another main achievement in quantum chaos is undoubthass 1/2 enclosed in a desymmetrized stadium billiard of
edly random matrix theoryRMT) [10], which accounts for radiusr=1 and area of ¥ /4, with Newman boundary
many properties in the quantum spectra of chaotic system&onditions on the symmetry axe®nly even-even parity
such as the widespread nearest neighbor energy level spagigenfunctions will be considergd
ing, which for all strong mixing systems follows the Wigner ~ We consider the dynamics influenced by the horizontal
surmise[11]. The beauty of many RMT results is their uni- PO running along the axis withy=0. For this purpose we
versality, which turns out to be also its drawback, since theystart from a symmetry adapted initial wave packet
are independent of the initial state preparation details and its
dynamics. Other measures sensitive to them, such as the digcy|¢(0))= aGy0,y0,p0 ,p3+ bexo,yo,fpg,pc;
tribution of spectral intensities, seem then, in principle, better

suited to elucidate relevant features in a given spectrum. +CGx0,fy0,Pg,7P3+dexo,fyO,ng,ng_{'C-C-y
However, the statistical fluctuation of quantum transition
strengths in stochastic systems was also found to be de- @)

scribed by another RMT universal formula, the Porter- h
Thomas(PT) distribution[12]. In this respect, Alhassid and where

(0] 2 .50 0
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(the coefficientsa, b, c, and d are obtained by imposing I | | |
Newman boundary conditions at the symmetry axesd
compute thginfinite resolution spectrum - =

|.(B)= 2 [(n] $(0))|*0(E—En)= 2 [an|?8(E~En), D
(3 =

with (x°,y°,P?,P9)=(1,0k,0) anday,= a,=1.603kg” (# . —
is set equal to 1 throughout this papeKets |n) represent

the eigenstates of the system, which have been obtained us-
ing the scaling method16]. The aspect of the obtained — -
I..(E) is rather irregular(see results below due to the 23500 25000
highly chaotic nature of the dynamics in this system. How- E

ever, when examined plosely, the C.On.mb.u“ng S“Cks. are FIG. 1. Scar spectrurT]T(E) at infinite (stick) and low resolu-
seen to come grouped in clumps. This indicates the eX|stenfie

facl derlvi truct hich is due t jon: =1 and 4.5(solid line9, corresponding to a wave packet
ofaclear l.m erlying s rl.JC ure, W. Ich 1S due o recurre_nces “ﬂwitially centered on the horizontal axis of a desymmetrized stadium
the associated correlation functig®(t) ={#(0)|4(t)) in-

. TN ... billiard with r=1, area ¥ «/4, and Newman boundary conditions
duced by the horizontal PO used to select the initial positior; e symmetry axes.

of the wave packet. This regularity shows up as well-defined
bands in the low resolution version of the spectrum,

7 _ ’ _272(E_E )2
IT(E):(ZW) l/ZTTO{EE} |an|Ze T To(E—Ep) /2’ (7)

1 0

I1(E)=—| dtW4(t)C(t)exp(iEt), 4

1B Zﬂf—w T(t)C(t)exp(EL) @ where 7 is an adimensional smoothing parameter dgds

the period of the scarring orbit. The corresponding results, in

where W(t) is a suitable smoothing window function, fil- the rangeE=23250-25300, are shown in Fig. 1, for1

tering out the dynamics of the system for times longer tharand 4.5. The first value of the smoothing parameter corre-

T. Moreover, the positions of these bands are given by theponds approximately to the smallest smoothing that washes

usual Bohr-Sommerfeld quantization condition, out all substructures. The required time scales with the in-
verse of the Lyapunov exponef8]. When the resolution is
increased tor=4.5, another superimposed intraband struc-

) ) ture is then exposed, thus revealing the relevance of longer

time dynamics.

with L ,=4 andv,=3. The wave functions associated with To qu.antitatively exa”?i”.e the 'implic'a'tion. of this result,

e consider next the statistics of intensities in our scar spec-

these bands correspond to a series of scar functions on t . S Y .
PO with an increasing excitation along it, as discussed elset[um‘ Accozd_mg to_ .RM.T the d'St”bUt!on of dyf‘a“?'ca"y
where[5,17,14. normalized” intensities in a fully chaotic system is given by

2 .
To efficiently study the characteristics of the spectra cor—the usual” (PT) fluctuations{12],

responding to this band structure, we define a “scar spec- P(x)=(2mx) " Y2 X2 @)

trum” in the following way. Using the procedure described

above, we calculate spectra at all energlessk,,, quan-  However, and as stated in the introduction, one crucial point

tized with the Bohr-Sommerfeld formulas and construct awhen performing this analysis is to eliminate the modulation

new spectrume(E), by taking only the central clump from due to any obvious low resolution structure present in the

each one of them: spectrum, so that all intensities are compared on the same
relative scale. This can be accomplished by “renormalizing”
the intensities with the corresponding value of the envelope

T.(E)=2 10 {EE}’ |aM26(E—E,),  (6)  [14,18,

2
km=L—

. - . . Xn:N|an|2/|r(En)r 9
where the prime indicates that the sum is only carried out for
states in the rangeE(,—E,_1)/2<E,<(En:1—-En)/2. In  where, coherently with Eq8), the number of states in the
this way the spectrum statistics is improved, since the conspectrum,N, has been included, in order to obtain a mean
straint imposed by the finite width of the initial wave packet value of unity. In Ref[14] it was shown that this task can be
is eliminated. Our calculations were performed in the ranggerformed systematically by monitoring the corresponding
k=50-250, which includes~8400 stadium eigenstates. variance from the PT distributiony?, as a function of the
Similarly to what was done in Ed4), we can now define a smoothing time.
low resolution version of this spectrum, which, for a Gauss- In Fig. 2 we show the results of this calculation when
ian window function, takes the form using the first 1000, 2000, 4000, and 8000 states of the scar
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grow with N. Actually, 7. iS found to scale, similarly to the

J i Heisenberg time, with/N, although it differs from this ex-

/ pression by a factor 010, indicating that our statistical
treatment should allow at least ten states per band in order to
capture the fluctuations implied by the PT distribution.

This result is further illustrated in Fig. 3, where, in addi-
tion to that, the relation betweel,,,,, the corresponding
orbit length, and invariant classical structures is also re-
vealed. To interpret this figure, one must take into account
that in the stadium, as in any other chaotic system, Gutzwill-
er's trace formula,p(k)==,6(k—k,), gives the quantal
density of states in terms of information on all POs of the
system. This process can be inverted, by Fourier transform,
obtaining the classical spectra of orbif§l. ) =X ,exp(k,L).
Figure 3 shows the square of this magnitude computed for

FIG. 2. Variance from the Porter-Thomas results of the wavel = 1000, 4000, and 8000. The results in the first panel in-
function intensity distribution for the scar spectrum of Fig. 1, cal- dicate that 1000 states are barely enough to distinguish be-
culated using the first 100@otted, 2000 (dotted-dasheg 4000  tween the two POs of length=6.5 plotted in the insets,

(dashed and 8000(full line) states of the scar spectrum of Fig. 1. which, on the other hand, are fully resolved whéh
=4000. The central panel shows how 4000 states are able to

discern dynamical features up ke=9. And finally, the re-
been included. This is a crucial detail of our computationals’u”S of panel(c) imply that the quantum mechanics of the

method, which eliminates the divergence at the origin of theSyStem up td=~16 can be adequately described with 8000

. S : . States.
PT expression and the contribution from the tail of the dis-> . . -
tribution [15], thus fostering the importance of the sticks in I_n order to elucidate Wh'(.:h POs, other than the 0r|g|nal_
the subband structure. As can be seen, all curves fall Oﬁprlzontal one, are resp_onS|bIe for the plateaus_ observed in
initially quite rapidly asr increases, and then start to stabi- slgéctzr’uri zlfméliar fnglyi';nca?hgioﬁgx?r:mgﬁa\?gth t?r?sti:(;?jr
lize at =1, indicating that, at least, an optimal fitting to the P 9- - 0y 9 9 9y-

PT surmise can be obtained when subtracting from the inte of the global density of statgs(k), we employ now the local

sity distribution the low resolution envelope corresponding around the horizontal PO in phase spaeersion of it,

to the dynamics of the horizontal P(Q9]. More interesting

is that, after this point, more optimal values .@? are ob- F(L)=2 |a, 2kt (10)
tained for a range of values af which extend in some sort n

of plateau or broad minimum. Finally, the variance grows

(approximately parabolically after a point.y, indicating  The inclusion of weight$a,|? it is not an irrelevant point,
when we are trying to describe the spectrum with too muctsince it implies that, contrary to what happens in Gutzwill-
“dynamical” resolution (for the number of states that have er’s original trace formula, only POs dynamically linked to
been included in the statisticS he relevance of this figure is the initial one are allowed to enter in our calculatidds].

that it shows the existence of plateaus, whose extensionkhe corresponding result is presented in Fig. 4, where it is

0.03

O—Z
0.015

0]

spectrum of Fig. 1. Only values in the range ,<5 have

o o
o o {
3 | 2) QR © & ©
&
®) o ®
@ @ [ ®
o~ I‘ ! ” !
= ro o
Q |l } (/e) [
el © J ! ' \\ ! ,’
= - ! T
! !
i {
! ]
o 4 g o = T o F . T
6.3 6.5 6.7 8.55 8.65 13.32 13.42
L L L

FIG. 3. |f(L)|? computed from the eigenvalues density of the desymmetrized stadium with Newman boundary conditibins for
=1000 (thick solid ling, 2000(thin solid line, and 8000(dashed ling and the corresponding periodic orbits.
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some good portion of their paths overlapping significantly
with the initial horizontal PO(Peaks in the left panel of Fig.

3 are, for instance, not observed in Fig). Again the degree

of resolution of our calculation is related to the maximum

value ofk included in the spectrum. This is illustrated in the

upper right inset to Fig. 4, where an enlargement of the

fourth recurrence ifif (L) |2, calculated using 1000 and 8000
states of the scar spectrum of Fig. 1, is presented.

One final point, worth mentioning, is the peak heights in
Fig. 4. Since they contain information on the extent and
phase of the interaction between the different POs contribut-

ing to[f(L)|?, it must be possible to obtain from them some
4 8 L 12 16 clues of the scarring process beyond the short time limit
corresponding to the linearized dynamics around the initial
FIG. 4. [f(L)|2 computed from the stick scar spectrum of Fig. 1. Unstable fixed point. This interaction can be evaluated, for
The different peaks have been assigned to the periodic orbits plottég@mple, as the Hamiltonian matrix elements of the scar
in the left inset. The right inset shows how 1000 stdthick solid ~ Wave functions obtained with the methods of Réfs-7],

line) are not enough to reproduce the three central peaks of thend this will be the subject of a future publication. o
fourth recurrence iff(L)|2 In summary, we have shown that scar spectra contain in-

formation about how POs are dynamically related. This in-
formation is revealed by analyzing the associated intensity
seen that|hf(|_)|2 presents a series of prominent peaks atdistributions, which show, superimposed to the universal PT
multiples of a fundamental length of 4, the length of thebPehavior, low resolution structures in the range of time scales
horizontal PO along which the packet was initially launched.of the corresponding periods. Moreover, we show that the
Moreover, the contribution of other longer POs is alsoSet of interacting POs is obtained by the mclus!on of local
clearly observed. By considering the lengths of the differentV€ights in the Fourier transform of Gutzwiller trace
POs of the stadium we have been able to assign each of thgmulas.

(nontrivial) contributing peaks, up to the fourth recurrence of ~ This work was supported by Grant Nos. BMF2000-437
the horizontal orbit; the corresponding POs are presented iDGES, AECI (Spain), PICT97 3-50-1015, SECYT-ECOS
the left inset of the figure. Notice that all these POs presenand CONICET(Argenting.
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